Manage prompts programmatically
You can use the LangSmith Python and TypeScript SDK to manage prompts programmatically.
Previously this functionality lived in the langchainhub
package which is now deprecated.
All functionality going forward will live in the langsmith
package.
Install packages
- Python
- LangChain (Python)
- TypeScript
pip install -U langsmith
pip install -U langchain langsmith
yarn add langsmith
Configure environment variables
If you already have LANGCHAIN_API_KEY
set to your current workspace's api key from LangSmith, you can skip this step.
Otherwise, get an API key for your workspace by navigating to Settings > API Keys > Create API Key
in LangSmith.
Set your environment variable.
export LANGCHAIN_API_KEY="lsv2_..."
What we refer to as "prompts" used to be called "repos", so any references to "repo" in the code are referring to a prompt.
Push a prompt
To create a new prompt or update an existing prompt, you can use the push prompt
method.
- Python
- LangChain (Python)
- TypeScript
from langsmith import client
from langchain_core.prompts import ChatPromptTemplate
client = Client()
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
url = client.push_prompt("joke-generator", object=prompt)
# url is a link to the prompt in the UI
print(url)
from langchain import hub as prompts
from langchain_core.prompts import ChatPromptTemplate
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
url = prompts.push("joke-generator", prompt)
# url is a link to the prompt in the UI
print(url)
import * as prompts from "langchain/hub";
import { ChatPromptTemplate } from "@langchain/core/prompts";
const prompt = ChatPromptTemplate.fromTemplate("tell me a joke about {topic}");
url = prompts.push("joke-generator", chain);
// url is a link to the prompt in the UI
console.log(url);
You can also push a prompt as a RunnableSequence of a prompt and a model. This is useful for storing the model configuration you want to use with this prompt. The provider must be supported by the LangSmith playground. (see settings here: Supported Providers)
- Python
- LangChain (Python)
- TypeScript
from langsmith import client
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
client = Client()
model = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
chain = prompt | model
client.push_prompt("joke-generator-with-model", object=chain)
from langchain import hub as prompts
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
model = ChatOpenAI(model="gpt-4o-mini")
prompt = ChatPromptTemplate.from_template("tell me a joke about {topic}")
chain = prompt | model
url = prompts.push("joke-generator-with-model", chain)
# url is a link to the prompt in the UI
print(url)
import * as prompts from "langchain/hub";
import { ChatPromptTemplate } from "@langchain/core/prompts";
import { ChatOpenAI } from "langchain-openai";
const model = new ChatOpenAI({ model: "gpt-4o-mini" });
const prompt = ChatPromptTemplate.fromTemplate("tell me a joke about {topic}");
const chain = prompt.pipe(model);
prompts.push("joke-generator-with-model", chain);
Pull a prompt
To pull a prompt, you can use the pull prompt
method, which returns a the prompt as a langchain PromptTemplate
.
To pull a private prompt you do not need to specify the owner handle (though you can, if you have one set).
To pull a public prompt from the LangChain Hub, you need to specify the handle of the prompt's author.
- Python
- LangChain (Python)
- TypeScript
from langsmith import client
from langchain_openai import ChatOpenAI
client = Client()
prompt = client.pull_prompt("joke-generator")
model = ChatOpenAI(model="gpt-4o-mini")
chain = prompt | model
chain.invoke({"topic": "cats"})
from langchain import hub as prompts
from langchain_openai import ChatOpenAI
prompt = prompts.pull("joke-generator")
model = ChatOpenAI(model="gpt-4o-mini")
chain = prompt | model
chain.invoke({"topic": "cats"})
import * as prompts from "langchain/hub";
import { ChatOpenAI } from "langchain-openai";
const prompt = prompts.pull("joke-generator");
const model = new ChatOpenAI({ model: "gpt-4o-mini" });
const chain = prompt.pipe(model);
chain.invoke({"topic": "cats"});
Similar to pushing a prompt, you can also pull a prompt as a RunnableSequence of a prompt and a model. Just specify include_model when pulling the prompt. If the stored prompt includes a model, it will be returned as a RunnableSequence. Make sure you have the proper environment variables set for the model you are using.
- Python
- LangChain (Python)
- TypeScript
from langsmith import client
client = Client()
chain = client.pull_prompt("joke-generator-with-model", include_model=True)
chain.invoke({"topic": "cats"})
from langchain import hub as prompts
chain = prompts.pull("joke-generator-with-model", include_model=True)
chain.invoke({"topic": "cats"})
import * as prompts from "langchain/hub";
import { Runnable } from "@langchain/core/runnables";
const chain = prompts.pull<Runnable>("joke-generator-with-model", { includeModel: true });
chain.invoke({"topic": "cats"});
When pulling a prompt, you can also specify a specific commit hash to pull a specific version of the prompt.
- Python
- LangChain (Python)
- TypeScript
prompt = client.pull_prompt("joke-generator:12344e88")
prompt = prompts.pull("joke-generator:12344e88")
prompt = prompts.pull("joke-generator:12344e88")
To pull a public prompt from the LangChain Hub, you need to specify the handle of the prompt's author.
- Python
- LangChain (Python)
- TypeScript
prompt = client.pull_prompt("efriis/my-first-prompt")
prompt = prompts.pull("efriis/my-first-prompt")
prompt = prompts.pull("efriis/my-first-prompt")
Use a prompt without LangChain
If you want to store your prompts in LangSmith but use them directly with a model provider's API, you can use our conversion methods. These convert your prompt into the payload required for the OpenAI or Anthropic API.
- Python
- TypeScript
from langsmith import Client, convert_prompt_to_openai
from openai import OpenAI
# langsmith client
client = Client()
# openai client
oai_client = OpenAI()
# pull prompt and invoke to populate the variables
prompt = client.pull_prompt("joke-generator")
prompt_value = prompt.invoke({"topic": "cats"})
openai_payload = convert_prompt_to_openai(prompt_value)
openai_response = oai_client.chat.completions.create(**openai_payload)
// Coming soon...
List, delete, and like prompts
You can also list, delete, and like/unline prompts using the list prompts
, delete prompt
, like prompt
and unlike prompt
methods.
See the LangSmith SDK client for extensive documentation on these methods.
- Python
- TypeScript
# List all prompts in my workspace
prompts = client.list_prompts()
# List my private prompts that include "joke"
prompts = client.list_prompts(query="joke", is_public=False)
# Delete a prompt
client.delete_prompt("joke-generator")
# Like a prompt
client.like_prompt("efriis/my-first-prompt")
# Unlike a prompt
client.unlike_prompt("efriis/my-first-prompt")
// List all prompts in my workspace
import Client from "langsmith";
const client = new Client({ apiKey: "lsv2_..." });
const prompts = client.listPrompts();
for await (const prompt of prompts) {
console.log(prompt);
}
// List my private prompts that include "joke"
const private_joke_prompts = client.listPrompts({ query: "joke", isPublic: false});
// Delete a prompt
client.deletePrompt("joke-generator");
// Like a prompt
client.likePrompt("efriis/my-first-prompt");
// Unlike a prompt
client.unlikePrompt("efriis/my-first-prompt");
For pulling prompts, we recommend using the langchain/hub
package, as it handles prompt deserialization automatically.
However, you can also choose to use the _pullPrompt
method of the langsmith
package directly but, you will need to manually deserialize the prompt using LangChain's load
method.
All other methods in the LangSmith SDK can be used directly.